skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Matthews, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. NA (Ed.)
    This linguistic anthropological case study examines one episode of play involving refugee-background teenagers participating in an informal STEM learning experience. This empirical case shows how the disciplinary practices of cosmic ray detector building were productively interwoven with spontaneous play directed by participating youth. The analysis reveals the need for a greater focus on play, which designers and researchers may initially dismiss as “off-task,” but may in fact be an important component of disciplinary practice. Furthermore, we call for attention to play as a potentially important feature of designing and researching culturally sustaining pedagogies (CSPs) with and for diverse learners in informal STEM learning contexts. 
    more » « less
  2. Refugee youth resettled in the United States experience two main barriers to long-term participation in STEM fields: (a) access to STEM skills and knowledge which is impacted by relocation and interrupted schooling, and (b) access to crafting positive learner identities in STEM as multi- lingual, multicultural, and multiracial youth. In this paper, we share a model for engaging refugee teens in cosmic ray research through constructing scintillator cosmic ray detectors, creating digital stories about cosmic rays, and hosting family and community science events where students share their learning with their families. This context serves as the site for ongoing ethnography exploring how refugee-background teens construct STEM-related identities and identifying supportive and unsupportive instructional practices. This paper summarizes the key program details and findings to date. 
    more » « less
  3. Abstract Gamma-ray binaries are luminous in gamma rays, composed of a compact object orbiting a massive companion star. The interaction between these two objects can drive relativistic outflows, either jets or winds, in which particles can be accelerated to energies reaching hundreds of teraelectronvolts (TeV). However, it is still debated where and under which physical conditions particles are accelerated in these objects and ultimately whether protons can be accelerated up to PeV energies. Among the well-known gamma-ray binaries, LS 5039 is a high-mass X-ray binary with an orbital period of 3.9 days that has been observed up to TeV energies by the High Energy Stereoscopic System. We present new observations of LS 5039 obtained with the High Altitude Water Cherenkov (HAWC) observatory. Our data reveal that the gamma-ray spectrum of LS 5039 extends up to 200 TeV with no apparent spectral cutoff. Furthermore, we confirm, with a confidence level of 4.7σ, that the emission between 2 and 118 TeV is modulated by the orbital motion of the system, and find a 2.2σhint of variability above 100 TeV. This indicates that these photons are likely produced within or near the binary orbit, where they can undergo absorption by the stellar photons. In a leptonic scenario, the highest energy photons detected by HAWC can be emitted by ∼200 TeV electrons inverse Compton scattering stellar photons, which would require an extremely efficient acceleration mechanism operating within LS 5039. Alternatively, a hadronic scenario could explain the data through proton–proton or proton–gamma collisions of protons accelerated to petaelectronvolt energies. 
    more » « less
    Free, publicly-accessible full text available July 10, 2026
  4. This paper is motivated by a practical problem: many U.S. states have public hearings on "communities of interest" as part of their redistricting process, but no state has as yet adopted a concrete method of spatializing and aggregating community maps in order to take them into account in the drawing of new boundaries for electoral districts. Below, we describe a year-long project that collected and synthesized thousands of community maps through partnerships with grassroots organizations and/or government offices. The submissions were then aggregated by geographical clustering with a modified Hausdorff distance; then, the text from the narrative submissions was classified with semantic labels so that short runs of a Markov chain could be used to form semantic sub-clusters. The resulting dataset is publicly available, including the raw data of submitted community maps as well as post-processed community clusters and a scoring system for measuring how well districting plans respect the clusters. We provide a discussion of the strengths and weaknesses of this methodology and conclude with proposed directions for future work. 
    more » « less
  5. Ligett, Katrina; Gupta, Swati (Ed.)
    The 2020 Decennial Census will be released with a new disclosure avoidance system in place, putting differential privacy in the spotlight for a wide range of data users. We consider several key applications of Census data in redistricting, developing tools and demonstrations for practitioners who are concerned about the impacts of this new noising algorithm called TopDown. Based on a close look at reconstructed Texas data, we find reassuring evidence that TopDown will not threaten the ability to produce districts with tolerable population balance or to detect signals of racial polarization for Voting Rights Act enforcement. 
    more » « less
  6. Abstract The first TeVγ-ray source with no lower energy counterparts, TeV J2032+4130, was discovered by HEGRA. It appears in the third HAWC catalog as 3HWC J2031+415 and it is a bright TeVγ-ray source whose emission has previously been resolved as two sources: HAWC J2031+415 and HAWC J2030+409. While HAWC J2030+409 has since been associated with the Fermi Large Area Telescope Cygnus Cocoon, no such association for HAWC J2031+415 has yet been found. In this work, we investigate the spectrum and energy-dependent morphology of HAWC J2031+415. We associate HAWC J2031+415 with aγ-ray binary system containing the pulsar PSR J2032+4127 and its companion MT91 213. We study HAWC data to observe their periastron in 2017. Additionally, we perform a combined multiwavelength analysis using radio, X-ray, andγ-ray emission. We conclude that HAWC J2031+415 and, by extension, TeV J2032+4130 are most probably a pulsar wind nebula powered by PSR J2032+4127. 
    more » « less
  7. Abstract Very-high-energy (0.1–100 TeV) gamma-ray emissions were observed in High-Altitude Water Cherenkov (HAWC) data from the lobes of the microquasar SS 433, making them the first set of astrophysical jets that were resolved at TeV energies. In this work, we update the analysis of SS 433 using 2565 days of data from the HAWC observatory. Our analysis reports the detection of a point-like source in the east lobe at a significance of 6.6σand in the west lobe at a significance of 8.2σ. For each jet lobe, we localize the gamma-ray emission and identify a best-fit position. The locations are close to the X-ray emission sites “e1” and “w1” for the east and west lobes, respectively. We analyze the spectral energy distributions and find that the energy spectra of the lobes are consistent with a simple power lawdN/dE∝Eαwith α = 2.44 0.12 0.04 + 0.13 + 0.04 and α = 2.35 0.11 0.03 + 0.12 + 0.03 for the east and west lobes, respectively. The maximum energy of photons from the east and west lobes reaches 56 TeV and 123 TeV, respectively. We compare our observations to various models and conclude that the very-high-energy gamma-ray emission can be produced by a population of electrons that were efficiently accelerated. 
    more » « less